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ABSTRACT

This study was motivated by the attitude-control problem from earth
of a satellite in deep space. The main feature of this control problem
is the presence of a large time delay in the control function due to the
long times required to transmit the control signals. Time delays in the
control function also arise in many other types of control problems, and
thus the attitude-control problem is merely used to illustrate the
influence which time delay has upon system behavior. It 1is assumed that the
time delay is constant in magnitude and identical in magnitude for each
component of the control vector. Linear systems are considered through-
out this paper, but it is pointed out that much of what is said applies
to non-linear systems as well.

The most common effect of a time delay in the control is the degrad-
ation of the system behavior with respect to its delay-free behavior. This
is demonstrated by considering a second-order problem with bounded control.
This degradation in system performance is due primarily to the inherent
uncontrollability of systems with control delays in the time interval

[t t. + t,] where t is the initial time and +t is the magnitude
02 YO a o

of the time delay. A theorem to this effect is pre:ented.

Optimal control of systems with time delay in the control is discussed
by first considering the analogous delay-free system and then utilizing
the results of the controllability discussion to pose an analogous optim-
ization problem for time-delay systems. It is shown that the necessary
conditions for optimality of time-delay systems are identical to those of

the analogous delay-free system after time tg+ t The significance

a
of this fact is that the optimal control law for the time-delay system is
a function of the predicted state, x(t + td), instead of the present
state, x(t). Several examples are considered in order to demonstrate

these ideas.
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A (nxn) system matrix

B (nxm) distribution-of-control matrix

Ci ith command point in the phase plane

C,% constants of integration

a( ) differential of ( )

e (nx1) error vector

F[x(tf),té' (scalar) cost of being in state x(tf) at time t,
£ switching function for 2nd-order example

H variational Hamiltonion

I (nxn) integrand of controllability matrix

I (mxm) identity matrix

J,J' (scalar) performance index

T (scalar) augmented performance index

k {(mx1) optimal control vector in feedback form

kl coefficient of error rate in linear switching function
L (scalar) cost function along the trajectory

m dimension of control vector

N (scalar) bound on control component magnitude

n dimension of state vector

Ql (nxn) weighting matrix of final state

Q, (mxm) weighting matrix of control vector

q number of terminal constraints

r (nx1) reference input vector

r,x polar coordinates of & point in oblique phase plane
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¥4 angle specification of oblique coordinate system

Si ith switch point in the phase plane
s Laplace variable
sgn signum function; sgn f = -i—
l£1
t time
tl time of last switching before reaching the origin
tc control time
td magnitude of time delay
tf final time
U set of admissible control -vector functions for the

delay-free problem

u (mxl) control vector for delay-free system
uo(-) (mx1) initial state of the delay (see pg. 11)
Vv set of admissible control-vector functions for the

time-delay problem

v (mx1) control vector for time-delay system

W (nxn) controllability matrix

X (nx1) state vector

Xp (nx1) final state vector

5( ) variation of ( )

t damping coefficient

6 time between second command and switching for first
command

A (nx1) vector of adjoint variables

v (gx1) vector of Lagrange multipliers

v Vi -t

a,T dummy variables of integration

Tp half-period of a periodic motion
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(scalar) augmented cost function of final state
(nxn) state transition matrix

(ax1) vector of terminal constraints
differentiation with respect to time
transpose of a matrix

inverse of a matrix

initial value

optimal value

ith component of a vector (see Appendix B)
quantity on zero-command curve

quantity associated with periodic motion
absolute value function

(1xn) vector of partial derivatives of a scalar

with respect to the components of the (nxl) vector x
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CHAPTER I
INTRODUCTION

1.1 PROBLEM FORMULATION

Small time‘delays'in the control are preéent in almost every contrbl
problem due to the finite time required to transmit the control signal
from one part of the system to another; Various approximate methods are
available to handle these small delays when it appears that they have
a significant effect upon system behavior. The effect of the delay is
usually significant when its magnitude is appreciable compared to the
natural period of oscillation of the plant being controlled. Then the
approximate methods are no longer applicable and a different method of.
analysis must be used to study these systems. This paper presents the
results of a study conducted on the control of linear systems which
possess large time delays in the control function.

The class of systems with time delay considered in this paper is

restricted by the following two assumptions:

Assumption 1.

The time delay is fixed in magnitude during operation of the control

function.

Assumption 2.

Each component of a multi-dimensional control function possesses

a time delay identical in magnitude to every other component.

An example of a linear system with time delay, which arises naturally
in the aerospace field, is that of the linearized rémote control from
earth of a deep-space satellite. In particular, it may be desirable to
control the attitude of an unmanned vehicle, upon which some detection
device, such as a telescope, is mounted. Controlling the vehicle's
attitude from earth allows greater freedom for exploration and reduces
onboard computer requirements. One can easily formulate this control
problem such that Assumptions (1) - (2) are satisfied. This study
is highly motivated by the above attitude control problem, but the theory

presented here is applicable to any problem involving.a time delay in



the control as long as the above assumptions are satisfied.
A more precise formulation of the control problem is now presented.
Assume that the system dynamics are specified by the following set of n

linear, first-order, ordinary differential-difference equations:
x(t) = A(t) x (£) + B(t) u(t-ty) (1.1)

where
x(t) is the nx1 state vector,
A(t) is a nxn matrix,
B(t) is the nxm distribution-of-control matrix,

u(t-td) is the mxl control vector, each component of

which is delayed by the constant time delay td.

A block diagram of this system, as it pertains to the attitude control
problem discussed above, is shown in Figure 1.1. It is noted here that
the satellite attitude equations of motion can be written in the form of
Equation (1.1) only after linearizing the original non-linear equations
of motion and neglecting all inhomogeneous terms arising from gravity
gradient tordues. This latter step is justified by the fact that the
satellite is in deep space where gravity gradient torques are assumed
negligible.

In Figure 1.1, r(<) and e{(+) are nxl vector functions of time.
The reference signal, r(°), is the desired value of the state. Since
a time of magnitude td/2 is required to transmit the value of the
state from the satellite to earth, r(+) must be delayed for a time td/Z
in order to form the error signal e (t-td/2). The controller formulates
a control signal on earth, knowing the error in the state at a time td/2
earlier, and then transmits this signal back to the satellite, resulting
in another delay of magnitude td/2'

The problem is to construct a controller, subject to certain restric-
tions, such that e(+) goes to zero in some desirable fashion. When
r(*) is identically zero, this control problem reduces to a regulator

control problem. If r(+) is constant or slowly varying, the solution
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of the regulator problem is an obvious candidate for the control function
and is thus the objective in this study.

The total delay in Figure 1.1, between the measurement of the state,
x(t), and the action of the resulting control signal, is of magnitude

t..
d
made using this fact. The two delays in Figure 1.1 are combined into a

One final simplification of the system shown in Figure 1.1 will be

single delay of magnitude td. The resulting block diagram is shown in
Figure 1.2,

The simplification of the original system made in Figure 1.2 removes
the direct analogy between the block diagram and the deep-space attitude
control problem. The controller design, however, can be constructed
from either of these systems, even when r(+) is not identically zero.
In particular, the controller in Figure 1.2 can be used in Figure 1.1,
after a time shift of magnitude td/2’ such that the two systems have
identical behavior. Designing the controller for the system shown in
Figure 1.2 is thus sufficient for solving the deep-space attitude-control
problem.

The assumption that the system of interest is linear in the state
and control is most convenient in the discussion on controllability.

It is not essential in the discussion on system optimization. Possible
generalizations of the system shown in Figure 1.2 are considered in

Chapter VI.

1.2 PREVIOQUS RESULTS

The attitude control problem discussed in Section 1.1 is the
primary motivation for this study. Sabroff [1]* presents a sound case
for earth-based control of satellites in deep space, assuming the control
problem created by the time delay can be solved. Adams [2] and Martin [3]

considered the problem of remote control, from earth, of a lunar unmanned

*Numbers in brackets, [-], refer to references given at the end
of this paper.
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surface vehicle. Both of these studies were experimental and revealed

some of the problems created by time delays, but neither satisfactorily
solves this control problem. Fliigge-Lotz [U4] considered the effect of

time delay resulting from relay imperfections in bang-bang control problems.
The results obtained, however, are not valid when the time delay is large,
even for the simple control problems considered there.

Puller [5] summarizes the recent theoretical developments in the
optimal control of systems with time delay in the control. The list of
references given by Fuller is fairly complete and will not be repeated
here. Very briefly, it can be said that most researchers of optimal
control of systems with a control delay have concluded that the optimal
control law must be based upon the predicted future of the state. Some
researchers recognized the fact that if an optimal feedback control law
is desired, it must have a functional dependence upon the control history
over a finite span of time. This segment of the control history is termed
the "state of the delay" by Fuller. As Fuller points out, most of the "optimal"
feedback control laws derived in the literature are, in fact, sub-optimal
since the "state of the delay” was not properly accounted for by the authors.

Fuller recognized the basic relationships between optimal control laws
for time-dealy and analogous delay-free systems. Without considering the
necessary conditions for optimality, he conjectured that the optimal feed-
back control law for the time-delay system is the same as the optimal feed-
back control law for the delay-free system when based upon the predicted
state, x(t + td). He concerns himself with bang-bang control problems

and the conjecture is true if ¢ is restricted-in magnitude. Fuller did

d

not recognize that if + is sufficiently large, an optimal feedback

discontinuous control las cannot be obtained for the time-delay system,
even if it is known for the delay-free system. Most of Fuller's analysis
presupposes that the control law for the delay-free system is known
explicitly. This is highly restrictive and, using his analysis when this
information is available, reduces the insight into the control problem one
obtains by studying the control of the delay-free system. It should also
be noted that Fuller's optimal feedback control law is not optimal at all
when an unknown disturbance acts on the system. This fact is true for any

optimal control law designed for a system with time delay in the control.



Ichikawa [6] approached this control problem from a different point
of view. He considered a fairly general optimization problem for a non-
linear system with delays in both the control and the state. The
performance criterion was completely general and end-poilnt equality
constraints were considered. By writing the finite number of difference-
differential equations as an infinite number of ordinary differential
equations and then applying Pontryagin's maximum principleé, he obtains
a set of necessary conditions for optimality. These conditions lead
to controllers which are functionally dependent upon the state of the
delay. Considering only the delay in the control, the necessary conditions
for optimality derived by Ichikawa can be easily derived, for a large
class of problems, without considering any infinite dimensional system
of ordinary differential equations. -Also, applying his necessary condi-
tions for optimality to obtain an optimal control law does not allow one
to make full use of his knowledge about the optimal control of the
analogous delay-free system. Nevertheless, it is interesting to compare
the necessary conditions obtained here, for a more restricted class of

problems, with those of Ichikawa.

1.3 ORGANIZATION OF WORK

Most of the analysis presented in this paper pertains to optimal
control of linear systems with time delay in the control. In Chapter II,
however, the general effect of time delay in the control upon system behavior
is discussed. The "state of the delay” is defined and an analogy to the
"'state" is given which adds insight into the control problem. A second-
order system with bounded control is then considered in order to demonstrate
the adverse effects which a time delay in the control can have upon system
behavior. Both linear and minimum-time switching functions are considered.
The minimum-time problem for the second-order system 1s reconsidered in
Chapter V. It is emphasized here that these simple examples are presented
to illustrate basic features of control delay and are not intended to
solve more complicated problems such as the 6th-order satellite attitude-

control problem.



The remainder of the report deals with general optimal control of
time-delay systems. In Chapters IIT and IV a set of necessary conditions
for optimality are obtained. Implementation of these necessary conditions
is discussed in Chapter V.

The sole purpose of Chapter III is to present the basis upon which
a time-delay analogue of the delay-free system and optimization problem
is constructed. Controllability requirements are discussed and a fairly
general optimization problem is posed. The necessary conditions for
optimality of the delay-free system are then presented without proof.
Except for several modifications of the definition of controllability,
which were made so that the definition could also be applied to time-
delay systems, the results of this chapter are well known.

The structure of Chapter IV parallels that of Chapter III except
now time-delay systems are considered. Controllability plays an important
role in the discussion of optimal control of time-delay systems, and is
therefore considered in some detail. The necessary conditions for optimal-
ity, for the optimization problem posed in this chapter, are obtained
from the necessary conditions for optimality of the analogous delay-free
system given in Chapter III. These conditions are also derived in
Appendix A by means of the calculus of variations. It was felt, however,
that relating the delay-free and the time-delay problems would gilve more
insight into how to utilize the solution of one problem to obtain the
solution to the other problem,

The calculation and implementation of optimal control laws from the
necessary conditions for optimality given in Chapter IV is the subject of
Chapter V. The general relationships between the control laws for the
delay-free and time-delay systems are first discussed. Two examples are
then considered. The first problem demonstrates how the necessary condi-
tions for optimality can be used directly to obtain an optimal control law
for an nth_order system with unbounded control and a guadratic performance
index. The second problem shows how the delay-free solution can be

utilized to solve the time-delay analogue of the second-order, minimum-—

settling-time example discussed in Chapter IT.



Finally, the basic conclusions drawn in this work are summarized

in Chapter VI, and some possible generalizations are suggested.



CHAPTER IT
EFFECT OF TIME DELAY UPON SYSTEM BEHAVIOR

2.1 THE STATE OF THE DELAY

The presence of a large time delay in the control signal of a linear
system has a significant effect upon the dynamics of the system. This
effect is largely attributed to the existence of a quantity which
A, T. Fuller [5] has termed "the state of the delay”. This terminology
is quite appropriate. Just as knowledge of the state, x(t), is
necessary in order to completely specify a delay-free system, the "state
of the delay" must be known, in addition to x(t), in order to completely
specify a system with a delay in the control.

It is assumed that the system dynamics are given by Equation (l.l) and
that the initial state, x(to) = X, 1is specified. The solution of
Equation (1.1) may then be deduced from the solution of the analogous delay-

free equation (Bquation (1.1) with ty = 0):

t

x(6) = 9t,t )%, + | @(s,0)B(x) u(r-t )ar, c2t, (20)

t
o

were @(+,.) is the state transition matrix for Equation (1.1). Now,
u(+) 1is the control signal generated by the controller in Figure (1.2)
and hence is initiated at time to. Since this signal is delayed a
time td’
tO + td.

and changing variables in the integral:

the control initiated at time to won't be "felt" until time

This i1s easily seen by evaluating Equation (2.1) at t = B, + by

o
x(to + td) = ¢(to + td,to)xb +\/F m(to +ty,0+ td)B(c + td)lﬁc)dc
¥ %a (2.2)
Thus, the function t(c),ce[to - td,to], is needed in order to calcu-
late ;dto + td), and hence the state, x(t), for any t > t . Note
that this function is not part of the control function.generated by the

controller after time © = to.

10



The state of the delay may now be defined in terms of the above

notation.

Definition 2.1

The state of the delay-at time t of the system described by
Equation (1.1) is the vector function wu(t),7elt - t gotls If the initial
time is t_, the initial state of the delay, Uo (1), Te[to,to + td], is

given by

| o 2.3
uO(T)-— u{t td)’ Te[to,to + td] (2.3)

Thus, from Definition 2.1, the state of the delay is merely that
portion of the control history generated during the last td units of
time. PFuller [5] likens systems with a control delay to a magnetic
tape moving at constant speed between two reels upon which data, u(t),
is recorded at one reel and from which data, u(t - td), is erased at the
other reel. The state of the delay at time t 1is then represented by all
of the data on the tape at time t. This analogy may be helpful in visual-
izing the effect which a delay in the control has upon system behavior.

The fact that one cannot alter the data on the tape, once recorded, suggests
that systems with a control delay are uncontrollable during the time
interval [t,t + td].

Before considering controllability and optimal control, a second-
order system is investigated in order to demonstrate the effect which a

control delay, and its state, has upon system performance.

2.2 SECOND-ORDER EXAMPLE WITH BOUNDED CONTROL

A second-order system with control delay is considered in this
section. Let e(t) %be a scalar error signal which satisfies the

following second-order differential-difference equation:
8(t) + 28 (t) +e(t) = Wt - t,) (2.1)

In Equation (2.4), time +t has been non-dimensionalized with the
natural frequency of the system. Thus both t and td are measured
in radians. Also, u(.) is the scalar control function and £ is the

11



positive damping coefficient of the system. Since e(t) is designated
as an error signal, the control problem in this example is a regulator
problem. _

Assume that the state, (e(t),e(t)), is zero prior to the action
of an impulsive disturbance upon the system at time to. This distur-
bance gives the system & non-zero initial state, (eo,éo), and since
u(t - td) =0, te[to,to + td], the initial state of the delay is
identically zero.

Now assume that the magnitude of the control is bounded:

lu(t - £)] < W, 62t (2.5)

where N 1s a positive constant. This control constraint suggests the
possibility of choosing u(:) +to have a bang-bang structure. This type

of controller is not only easily implemented, but also proves to be optimal
in a large class of optimization problems. We shall assume, therefore,

that the control can be specified by

u(t - td) = -Nsgn[f(e(t - %, ),e(t - tg))], b2t by
(2.6)
=0, to < t < to + td
where sSgn X = X and £(+,+) 1is the switching function in the state

variables. erglng u(*) in this way limits this discussion to feedback
control laws.

The trajectories of Equation (2.4), using the control law in Equation
(2.6), are logarithmic spirals about (&N or 0,0) in the (e,é)-phase
plane when an oblique coordinate system is used [7]. This coordinate
system, along with the necessary defining relationships for the trajectories,
is shown in Figure 2.1.

Thus, from the defining equations in Figure 2.1, it is seen that r
is a converging logarithmic spiral when t 1s positive and @ varies
linearly with the dimensionless time. Note that since A= -1 - gg At,
the dimensionless time delay td results in an angular displacement in
the phase plane of magnitude V1 - §2 td radians. These facts are used

below in the construction of trajectories for two particular switching

functions.

12
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Figure 2.1. Oblique Coordinate System and Defining Equations for the
Trajectories of the Second-Order Example.
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2.2.1 LINEAR SWITCHING FUNCTION

The most simple switching function to implement in the construction

of bang-bang controllers is the linear switching function:

fle(t),e(t)] = e(t) + klé(t), b2t (2.7)

where kl is a scalar constant. When kl > 0, this switching function

causes the trajectories of the delay-free system to converge to the origin,
ending in a chatter motion when the relay is non-ideal [4].

The introduction of a time delay, td’ into the control law causes
the switching function to become

fle(t - td),é(t - t5)] = et - %) + klé(t - t4)s bz b+t

(2.8)

when the command curve is given by Equation (2.7). The effect of the time

delay is a rotation of the switching curve in Equation (2.7) and a division
of the single switching curve into two parallel switching curves. This is
clear when the switching function in Equation (2.8) is written in terms of

(e(t),e(t)) [k, Bq. 138 in modified form]:

] _ klsiﬁ;td Esinve
fle(t - td)’e(t - td)] = e(t) [c03vtd + — - —
v v
. _ simvty  k {sinve, )
+ e(t) [klcosvtd - — + — ] F sen(fle(t),e(t)]) x
v v
roo_ sinvt {sinvt
[cosvtd + ol — d — d exp-gtd] (2.9)
v v

where
v = Jl - ¢2 (2.10)
Also, it is shown in [4] that if & periodic motion exists, then the half-
period, Tp, of this motion is the solution of the following transcendental
equation:
[sin(V(td - Tp) +7) + klsiﬁJ(td - TP)] + exp'g?P[sin(Utd + )

(2.11)
+ klsiﬁ;td] = Vexp-gtd[cos;Tp + coshng]
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and the switch points of this periodic motion, (ep,ép), are given by

£ sinvt_ - sinhfx
Yy P b

e = F sen[-r{e(t),e(t))]L—  (2.12)
P cosvt_ + coshft
- b : P
sinvt
ép = +sgn[-f(e(t),e(t))] v (2.13)

cosvt_ + coshlt
b p

It is important to note here that the above results are valid only

when a double-command does not occur during the motion of the system.*

A double-command occurs when a second command is given before switching
for the first command can be executed. This will always happen when td
is very large (td > > g rad). Martin [3] considered control of this
system by means of reverse switching ( +Nsgnf(+,+) in Equation (2.6)
instead of -Nsgnf(+,*)). When this type of switching is used, double
commands can occur for any size td if the initial conditions for the
trajectory lie in a certain region of the phase plane. When double
commands occur, Equation (2.12) and Equation (2.13) still give (ep,ép)

for a periodic motion but Eguation (2.11) for ™ is replaced by
= .= -{t = T
[51n(v(td - Tp) + y) + k151nv(td - Tp)] + exp P[sin(vtd + oY)+ k, sin vtd]

- _ -
= 2exp P[cosv'cp + coshg'rp][sin(v(td - Tp) + )

—_ v “t(t, - 1)
i - - —= d 2.1h
+ k151nv(td Tp) 5= eXp p’] ( )
Also, the eguation for the switching curve is altered to become

fle(t - td),é(t - £5)1 = e(t)[sin(vey + 7) + k sinvt,] (2.15)

-é(t)[klsin(vtd -7) + sin?td] F sgn(fle(t),e(t)]) { [sin(;td+ 7)

(continued)

¥This fact was overlooked in [4].
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+ k, sin ;td + v exp—gtd] - 2exp-g(td - e)[sin(;é + )

+ k) sin -'Je]} =0

where 6 1is the normalized time elapsed after the second command is

(2.15)

given until switching for the first command 1s executed. This quantity is
a function of the initial state of the system and thus Equation (2.15)
does not give a feedback representation of the switching points for this
problem. The derivations of Equation (2.14) and Equation (2.15) are quite
tedious, but follow the straightforward approach used to derive Equation
(2.9) and Equation (2.11) in [L].

Example trajectories having double commands as the result of a large
time delay and as the result of reversed switching are shown in Figure_(2.2)
and Figure (2.3), respectively. The command points sre labeled ci and the
corresponding switch points are labeled Si' The trt jectories for the
analogous delay-free system, possessing the same initial state, are indi-
cated by the dashed lines in these figures. It is observed that the
presence of double commands invalidate the expression for the switching
curve in Equation (2.9). Equation (2.15) is verified only after a lengthy
calculation. Also note, particularly in Figure (2.3), that double commands
can result in trajectories with highly undesirable properties. Further-
more, the sequence of switch points along a trajectory with double commands
can be determined only in an open-loop sense since the sequence is highly
sensitive to the initial state. This initial state sensitivity appears in
the quantity 6 in Equation (2.15). Trajectory design for a given
initial state is, therefore, extremely difficult. Double commands should
be avoided whenever possible.*

Now assuming the non-existence of double commands, the validity of
the expression for the switching curve in Edquation (2.9L and the conditions
for periodic motion in Equations (2.11)-(2.13), is demonstrated in Figure (2.k4)
and Figure (2.5). Figure (2.4) shows an example trajectory which has desirable

properties when td is zero but which ends in a large amplitude 1limit

*The remarks msde for double commands are equally valid for multiple-
commands of any order.
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Figure 2.2. Example Trajectories for Second-Order System with Damping

Coefficient ¢ = 0.2 Using a Linear Command Curve (kl =
1.0): Double Commands Due to Large Time Delay.
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Example Trajectories for Second-Order System with € = 0.2
Using a Linear Command Curve (kl = 1.0): Double Commands
Due to Reversed Switching.
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COMMAND LINE
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— tq=m/2 rad

I

f(e,e)=0
SWITCHING G k,=1.0

LINE

Figure 2.4. Example Trajectories for Second-Order System with { = 0.2
Using a Linear Command Curve (kl = 1.0): Single Commands.
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Figure 2.5. Example Trajectories for Second-Order System with § = 0.2
Using a Linear Command Curve (kl

= -1.0): Single Commands.
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cycle about the origin when ¢ is large. For the case shown in

Figure (2.4), application of Eiuations (2.11) - (2.13) gives g ~ 156°
and (ep,ép) = (+1.83N,+1.78N). Similarly, T, 200° and (ep,ép) =
(£2.78N,F.96N) for the trajectory shown in Figure (2.5). This latter
limit cycle is larger in amplitude than the limit cycle obtained with
no time delay. This is a consequence of the discontinuity of the
switching line at the origin caused by the delay in the control. Note
that the trajectories shown in Figure (2.5) are similar to those obtained
by using reverse switching, positive kl, and no time delay.. It should
also be noted that as long as td is non-zero the steady-state motion of
the system is a finite amplitude limit cycle.

The intent of the above examples was to show the effect which a
time delay in the control signal has upon the trajectories of the second-
order system when a linear command function is used. Similar discussions
can be conducted for other command functions, resulting in many of the
same conclusions drawn from the above examples. The presence of a finite
amplitude limit éycle, and generaily undesirable behavior in the neighbor-
hood of the origin, are characteristics of trajectories that time delays
in the control create. One other command function is considered in the
next section since it will be relevant in the discussion on optimization,

and since it further demonstrates the effects caused by time delays.

2.2.2 MINIMUM TIME SWITCHING FUNCTION FOR A DELAY-FREE SYSTEM USED FOR
A SYSTEM WITH DELAY IN THE CONTROL

Bushaw [8] determined the switching function which gives minimum
time trajectories from an initial state to the origin for the second-
order example (Bquation (2.4)) with ty
to express this switching function, f(e(t),e(t)), explicitly. In the

equal to zero. It is difficult

(e,é)-phase plane, the switching function is constructed from a sequence
of logarithmic spiral segments having centers lying on the e-axis. For
the special case of zero damping, the spiral segments are semi-circles of
constant radius. This case is illustrated in Figure 2.6 and Figure 2.7.
Example trajectories of the minimum time solution to the control
problem for the delay-free system are shown by dashed lines in Figure 2.6
and Figure 2,7. Since § = 0.0 in these figures, the trajectories are
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SWITCHING CURVE
FOR td=0

u=+N

Sample Trajectories for a Second-Order Example with Zero
Damping Using Bushaw's Minimum-Time Switching Curve: Single
Commands -
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TO KEY
LIMIT .

CYCLE € - td=0

Figure 2.7. Sample Trajectories for a Second-Order Example with Zero
Damping Using Bushaw's Minimum-Time Switching Curve: Double
Commands.
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composed of circular arcs, centered about (4N,0)¥%. Also shown in these
figures are trajectories which result when this minimum time switching
function is used as a command function for the second-order example with
time delay. A double-command trajectory is shown in Figure 2.7, whereas
only single commands occur on the trajectories shown in Figure 2.6. A
finite-amplitude limit cycle 1s reached in Figure 2.6 and divergent motion,
which possibly results in a very large-amplitude limit cycle, is the
consequence of the time delay in Figure 2.7. In both of these examples,
the introduction of time delay in the control has drastically altered the
behavior of the system trajectories. The control law must, therefore,

be altered in order to duplicate the delay-free system behavior when time
delay is present.

This example will be considered again in Chapter V, following the dis-
cussion on optimal control in Chapter III and Chapter IV. At that point
the switching logic will be presented which gives minimum time trajectories
for the second-order example with time delay, assuming only single commands

occur,.

*See the Defining Equations in Figure 2.1.

24




CHAPTER TIIT
OPTIMAL CONTROL OF DELAY-FREE LINEAR SYSTEMS

3.1 SYSTEM DESCRIPTION

The system of interest in this chapter is described by the following

set of n linear, first-order, ordinary differential equations:
x(t) = A(t) x (t) + B(t)u(t), x(t.) = x_ (3.1)

where
x(t) is the n x 1 state vector,
u(t) is the m x 1 control vector,
B(t) is the nxm distribution-of-coﬁtrol matrix,
A(t) is a nxn matrix.

This system is the delay-free analogue of the time-delay system
specified by Equation (1.1). The assumption that the system of interest
can be described by Equation (3.1) implies that the origin, which is the
proint of interest in a regulator problem, is an equilibrium point of the
uncontrolled system. When the origin is not an equilibrium point (as is
the case when a non-zero forcing function is included in Equation (3.1)),
a non-zero control function is needed to hold the origin once it is
attained. This problem will not be discussed in detail in this paper.

Since Equation (3.1) contains no time delay, standard techniques may
be applied to determine a satisfactory control function, u(t), with
respect to a chosen performance index [4,7,9,11,12]. The purpose of this
chapter is to present some known results for systems described by Equation
(3.1). These results will then be used in Chapter IV to analyize linear
systems possessing a time delay in the control function. The relationships
between systems which possess a time delay, and those which do not, are
then discussed in Chapter V.

The concept of controllability is important in the discussion of
systems possessing time delays. A brief discussion of this concept, as

it pertains to delay-free systems, is thus presented in the next section.
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3.2 CONTROLLABILITY OF IELAY-FREE SYSTEMS

Before presenting an explicit definition of system controllability,
the following definitions are made in order to clarify this concept when

applying it to systems with time delay¥*:

Definition 3.1

A state x(to) = x_ 1is transferred to a state x(tf) = X, # X

by a control u(t), t St <w, if x(t) = xp for all t =2 t..

Definition 3.2

The control time, tc’ is the time required to transfer a state

from one value to another.
A general definition of controllability may now be given which is

valid for systems possessing time delays, as well as those which do not.

Definition 3.3

A state x(to) = x_ 1is controllable at time +t_ = in the control

time © (=tf - to) if there exists some finite time t. > t_ and some
C

control vector u(t), te(t,,©), which transfers x_ # X, to the state !
x(tf) = x, at time t.. (If every state X 1is controllable in any
control time tc > O, then the system associated with Xo is said to be

completely controllable.)

The final state, Xp, may be equated to zero by a transformation of
coordinates without loss of generality. This is done, for convenience,
throughout the remainder of this discussion. It should also be noted
that the concepts of "transfer" and "control time" expressed in Definitions

(3.1) - (3.2) need not enter the discussion on controllability of systems

prrampa—

described by Equation (3.1). Assuming the availability of an unbounded

control, the control time, tc’ for a controllable state, Xgs is complete-
ly arbitrary. Also, from Equation (3.1) and the fact that the origin is an

equilibrium point of the uncontrolled system, the state x(t) is zero

*Definitions 3.1 - 3.2 are similar to those given in [9], pg. T1.
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for all t > t_, if and only if wu(t) = 0, te[tf,m] and x(tf) =0

f :
where t ia arbitrary since tc is arbitrary. These remarks may not

f
be made about systems possessing time delays, and thus "transfer" and
“"eontrol time" are incorporated into the definition of controllability.
Now let ¢(+,+) be the state transition matrix for Equation (3.1)¥

and define the "controllability matrix" of this equation to be

t

f
W(to,tf):-f cp(tO,T)B(T)BT(T)CPT(tO,T)aT. (3.2)

t
o]

The test for system controllability is expressed in terms of W(to,tf)
by the following theorem:

Theorem 3.1 [10]

The system described by Equation (3.1) is completely controllable
at time +t_ = in any control time tc(=tf - to) if and only if W(to,tf)
has rank n for any tf > to.

Assuming the system of Equation (3.1) is completely controllable,
an optimization problem may now be posed and some necessary conditions

for optimality may be presented. This is done in the next section.

3.3 QPTIMIZATION PROBLEM FOR DELAY-FREE SYSTEMS

To facilitate the statement of the optimization problem considered
here, and the corresponding necessary conditions for optimality, several

definitions will first be made.

Definition 3.4

The performance index (scalar) is given by

t

T
3= Fla(eg),vg) + [ Llx(s) u(s) et (3.5)

t
o

*p(-,+) 1s the state transition matrix for both Equation (3.1)
and EqQuation (1.1).
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where

tf is the final time which may or may not be free,

Llx(t),u(t),t] is the cost along the trajectory from the
f’
F[x(tf),tf] is the cost for being in the state x(tf) at

initial time, to, to the final time, t

time tf.

Definition 3.5

The terminal constraints on the state which the system of Equation

(3.1) may have to satisfy are expressed by the set of equations

¥lx(t,),t.] = 0 (3.4)

where
¥ is a g x 1 vector function, 9 < n.

It is assumed that the q constraints in Equation (3.4) are
linearly independent. It is necessary, therefore, that g < n for the
problem to be well posed. Also note that only equality end-point con-
straints are considered in this discussion. The more general problem
with end-point inequality constraints is not treated here, but the theory
developed for problems with equality constraints can be easily extended

to handle this more general problem [12].

Definition 3.6

The set of all admissible controls, u(t) in Equation (3.1), is
deslgnated by U.

It is noted here that the character of the set U distinguishes delay-
free from time-delay optimization problems. For the present, however, it
is only necessary to state that U must be specified before an explicit
optimal control history, uop(t), can be determined.*

The optimal control problem can now be stated precisely in terms of

the quantities defined shove:

*See [11], for example, on how to explicitly specify the set U.
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OPTIMIZATTION PROBLEM

Given the system of Equation (3.1) and an initial state X5
determine the control history uop(t),te[to,tf], which minimizes the

performance index J in Equation (3.3), satisfies the terminal constraints

in Equation (3.4), and which lies in the set of admissible controls, U.

When discussing optimization problems of this type, it is useful to
construct the augmented performance index J by adjoining the constraint
equations (3.4) and the system differential equations (3.1) to the per-

formance index (3.3) with Lagrange multipliers v and XA(t) as follows:

(3.5)
t

f
3=[Hﬂwnﬂ+v%hﬁhﬂhr%+\f [LGe(e) u),8) + AT (6) [A(E)x(t)
Yo+ B(t)ult) - k(1)) a

where v 1is a g x 1 vector of parameters and A(t) is an n x 1 vector

function. If we define the variational Hamiltonian of the system to be
H(x,M,u,b) = Lix(t),u(t),t) + AT(6){A)x(t) + B(t)u(t)]1,
telt ,t,1, (3.6)
then the augmented performance index may be written

t
f
T = [F[X(t),t] + VT\V[X(t):t]]t___t + /

H(x,M,u,t) - xT(t)k(t)z at.
£ t
o (3.7)

Since J = J when Equation (3.1) and Equation (3.L4) are satisfied,

the optimization problem may be reformulated as follows:

REVISED OPTIMIZATION PROBLEM

Given the system of Equation (3.1) and an initial state X, s
determine the control history ubp(t,k,v), te[to,tf], which minimizes
the augmented performance index J in Equation (3.7) and which lies
in the set of admissible controls, U. Choose v, implicitly, to satisfy

the constraint equations (3.4), and choose A(t) such that the system
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equations (3.1) are satisfied for te[to,tf].
The necessary conditions for optimality of u(t) in the revised

optimization problem may now be stated as follows:

NECESSARY CONDITIONS FOR OPTIMALITY {12]

It is necessary, if u(t) = uop(t) is optimal in the revised optimi-
zation problem, that there exist a vector function l(t),te[to,tf], and

a vector of parameters v such that the following conditions are satisfied:

x(t) = §, T telt_,t,] (3.8)
A(t) = -H T, telt,,tp] (3.9)
u g (8) = arlglegin H(x,\,u,t), telt,,t,] (3.10)
x(t ) = x, (3.11)
T (s,) = (aa—z . VT%)Hf (5.12)
[g% + VT% + _gg + VT%) (x + D) + L]y = O (3.13)

This set of equations, along with the constraint equations (3.L4),
is mathematically consistent in that it contains: (1) 2n first-order
ordinary differential equations (3.8) - (3.9) with 2n %boundary conditions
(3.11) - (3.12); (2) q parameters v chosen such that the q algebraic

equations (3.4) are satisfied; (3) one parameter %, to satisfy one

algebraic equation (3.13); (4) one vector relationsiip (3.10) to deter-
mine the optimal control vector uop(t).

The condition expressed in Equation (3.13) is referred to as the
transversality condition for free end time problems and is used to determine

t.. This equation need not be satisfied, however, when +t is specified.

T f
The calculation of uop(t) from Equation (3.10) is assumed to always be
possible in this paper. One is not able to perform the operation indicated

in Equation (3.10) explicitly when on a singular arc of the problem*;

*For a discussion of singular arcs, see Reference [12], Chapter 8.
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these arcs are not considered in the present analysis. Finally notice
that A(t) satisfles the adjoint equations of the system of Equation (3.1),
and thus A(t) is termed the adjoint vector of this system.
In the next chapter, the system with time delay, analogous to that
of Equation (5.1), will be discussed. The results of the present chapter

will be used in the analysis of this system.
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CHAPTER IV
OPTIMAL CONTROL OF LINEAR SYSTEMS POSSESSING TIME DELAYS

4,1 SYSTEM DESCRIPTION

The system of interest in this chapter possesses dynamics described
by Equation (1.1). This system is completely specified by these dynamical
equations, by the initial state of the system, and by the initial state of

the delay (see Section 2.1). For convenience, these quantities are listed

below:
x(t) = A(t)x(t) + B(t) u(t - t,) (k.1)
x(t ) = x_ ' (k.2)
u(e -t ) =u (8), b st<b o+, (4.3)

It is assumed that t© has a finite magnitude, and that the specified

vector function uo(t§ is a member of the set U of admissible control
functions (Definition 3.6). Except for this restriction, uo(t) is an
arbltrary, specified vector function.

Referring to Equation (2.1) and Equation (4.3), the solution of

Equation (4.1) for x(t) may be written

b+ By
x(t) = ¢(t’to)xo + u/\ @(t,T)B(T)uO(T)dT
tO
t
+ f o(t,7)B(vJu(r - t5)dr,  t=2t +t, (k.k)
b, + by

where, again, ¢(-,-) 1is the state transition matrix of both Equation (4.1)
and Equation (3.1). It is thus seen that the state of the system, x(t),

a’ is a function of the initial state Xo and a
functional of the initial state of the delay uo(t), te[to,to + td].

at time t > to +t
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A discussion on controllability of Equations(4.1l) - (4.3) is presented
in the next section, paralleling the one given for delay-free systems in

Section 3.2.

4,2 CONTROLLABILITY OF SYSTEMS WITH TIME DELAY

Definition 3.3 for system controllability applies equally well to
systems with, or without, time delay in the control. The concepts of
“state transfer" and of "control time” (see Definitions (3.1) - (3.2)) will
have significance in the present discussion, despite their irrelevance in
Chapter III.

First define the "controllability matrix" for the system characterized
by Equation (4.1) to be

te

= T T
Wb, +ty,b) = f ale, +t,1B(0B NPT + £ ,)ar

by Tt (4.5)
The following theorem gives a necessary and sufficient condition, in

terms of tc(=tf - to) and W(tO + td,tf), for insuring the controlla-
bility of a state xo at time to associated with the system of Equations

(4.1) - (L.3).
Theorem 4.1

A state x(to) = X, associated with the system of Edquations

(4.1) - (4.3), is controllable at time t, in control time <t if

and only if (1) w(tO + td,tf) has rank n for any t,>t_ +t,, and
*

(2) b, > tye

Proof

Assume tc > td. Under this assumption it will first be shown that

the existence of W"l(to + td,tf) is sufficient for controllability of x_.

*Condition (2) of this theorem implies that the state x(t) is
uncontrollable when te[ty,t, + tgl. Hence, from Definition (3.3), any
gystem with a time delay In Lhe econtrol cannot be completely controllable.
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Suppose the theorem is true. Then, according to Definition (3.3),

there exists a time t_ > to +t. and a control function u(t - td)

f d
such that x(tf) =0 forall t=2t,. Since t >t,, Equation (4.4)
is valid at t = t.. Evaluating Equation (4.4) at t = t, + &, to obtain

x(to + td), and then solving for x(tf) in terms of x(to+ td) gives

o + td
x(to + td) = q;(to + td,to)xO + f cp(to + td,T)B(T)uO(T)dT
%o (4.6)
e
x(tf) = m(tf,to + td)x(to + td)-+ J[ @(tf,T)B(T)u(T - td)dT
to * td (%.7)

According to the theorem, W_l(to + td,tf) exists for all t. > b+ By
Thus the following control function is a candidate for u(t - td),

Te[to + t tf]:

d)

_ AT T -1
u(t - td) = -B (1) (to + td,T)W (to + td,tf)x(to + td),Te[to + td,tf]
(4.8)

It will be shown in Chapter V that this control function minimizes the

performance criterion

t
1 £ T
J=73 l/ﬂ u(t - td)u(T - td)dT, b >+ g,

t
o]

with x(tf) constrained to be zero. This fact is incidental, however,
since any control law which contains W-l(to + td,tf) and makes x(tf) =0
is all that is needed here. Substitution of Equation (4.8) into Equation
(L.7) gives x(tf) = O. Then, from Equation (4.1), setting u(t - td) = 0,

T>t results in x(t) = 0, t > to. Thus, the existence of W-l(tO + td’tf)

f,
when tc > td 1s sufficient to insure controllability of the initial

state x .
o}

To prove necessity when t_ >t assume (1) w(to + td’Ef) is

dJ
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singular for some final time Ef, and (2) the state associated with
the system of Equations (4.1) - (k.3) is controllable at time % . Then,
there exists a control vector function EO(T),Te[to,to +=td], which gives
a non-zero state §(to + td) at time t=1t_+t, (see Equation (4.6))
having the following property*:

W(to + td,Ef)E(to + td) =0 (4.9)

The existence of ﬁO(T),Te[to,to + td] follows from the fact that

uo(r) is an arbitrary function and W(tO + td,Ef) is singular. Now,
since the state X_ = is controllable by Assumption (2), there exists a
control function u{t - td), Te[to + td,tf], such that x(tf) =0 in

Equation (4.7). From this equation we obtain

§(to + td) = -f ’ cp(to + td,T)B(T)'ﬁ'(T - td)dT (k.10)
to + ty

_T — —
From Equation (4.9), x (to + td)w(to + td,tf)x(to + td) = 0. Using

Equation (L4.5) in this expression then gives

I . (4.11)

£
f [BT(T)qJT(tO + td,T)E(to + td)]T[BT(T)q)T(tO + 6, D)X(t + vy)]ar = 0
t o+t

o d

Equation (4.11) implies
BI(t)g (t +b.,7)%(t +t.) =0, telt +t
P o a’ o a 2 o)

T
Multiplying Equation (4.10) by x (to +t d) and then using Equation (4.12)

d,'Ef] (4.12)

*If x(to + tg) = O, then,since the origin is an equilibrium point of
the uncontrolled system of Equation (L.1), wu{t - t3) = O, T = to + tg,
insures that x(t) = 0, t 2 to + tg. Thus, Xx(ty + tg) is assumed to be
non-zero since we are interested in determining whether i(to + td) # 0
can be transferred to the origin in control time te > td while satisfying
Assumptions (1) - (2) above.
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finally gives

t
_T - Jf T
X (to + td)x(to + td) = - x (to + td)¢(to + td,¢) «
t + by
© (4.13)

B(t)u(r - td)dT =0

Equation (4.13) implies E(to + td) = 0 which is a contradiction. There-
fore it is necessary, as well as sufficient, that W-l(to + td,tf) exists
when tc > td.

It remains to show that if tc <t
controllable.* When tf < to +t

dJ
the solution of Equations (4.1) - (4.3)

then the state xo is not

d’
for x(tf) is

be

x(t,) = ot t )x  + \/p 9(t,,7)B(t)u (v)ar, b, < b+t
Yo (h.14)

Recall that uo(T), Te[to,to + td], is arbitrary and prescribed. Since

X(tf) in Equation (4.14) is independent of y{+), +there is no way to place
x(tf) 4 0 at the origin once x, and uO(T), Te[to,to + td], are
prescribed. If, by chance, x(tf) = 0, then it is necessary that uO(T) = 0,
Te[tf,to + td], if the state is to remain at zero for +t = tf. In general,
this will not be true. Thus it is concluded that the state associated with
the system of Equations (L4.1) - (4.3) can be controllable only if b,z b,
This completes the proof of the theorem.

It is of interest to compare the controllability requirements for the
delay-free system (Theroem 3.1) and the analogous time-delay system
(Theorem 4.1). When te <t + by,
regardless of the controllability of the delay-free system. Therefore

the time-delay system is uncontrollable,

assume tf > to + td and, for purposes of comparison, assume tf is fixed

*The uninteresting case of tC = td is discussed in the footnote on
page 35.
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and to is free. Now note that the integrand of the controllability
matrix for both systems is positive semi-definite. Define the integrand

of the controllability matrix for the time-delay system to be

I(ty + t5m) = [0(t) + 3, m)B(R) (e, + tg,mB(r)] T welt, + ty,t,]
(k.15)

The integrand of the controllability matrix for the delay-free system,
I(to,T), may then be written

- T
I(to,r) = ¢(t0,t0 + td)I(to + td,T)@ (to,to + td), Te[to + td,tf]

[0(t,,)B(T) Mot 7)B()1" , el b, + 5]
(4.16)

From Theorem h.l, if the time-delay system is controllable for some to’
then I(to + td,T) is non-zero over some finite interval on the t-axis,

Te[to + 1t tf]. Then Equation (k.16) implies that I(tO,T) is non-zero

2
over the Zame interval on the t-axis and hence, from Theorem 3.1, the delay-
free system is controllable at time to' The converse is not true since
controllability of the delay-free system at time t_ implies I(tO,T) is
non-zero over some finite interval on the 7-axis, Te[to,tf]. This non-
zero segment on the T-axis may, however, occur in the interval [to,to + td],

which, from Equation (4.16), implies nothing about I(to + td,T), Te[to
t ,t_ 1.
+ f]

To summarize the above discussion, the following conclusions have been

d)
drawn here:

1) For a given bp >t  + ¢ the controllability of a state

d,
x(to) = x_, associated with the time-delay system, implies

controllability of this state in the analogous delay-free system.

2) For a given t_ > t o+t the controllability of a state

f a’
X(to) = x> associated with the delay-free system, implies noth-
ing about the controllability of this state in the analogous

time-delay system.
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4.3 OPTIMIZATION PROBLEM FOR SYSTEMS WITH TIME DELAY

In this section an optimization problem, along with the corresponding
necessary conditions for optimality, is formulated for linear systems with
time delay in the control. Both the system of interest and the optimiza-
tion problem posed below are analogous to those of Section (3.3). The
notation of that section will be retained wherever possible. 1In fact, the
optimization problem for systems with time delay will be posed so that the
results of Section (3.3) can be used directly, to determine the necessary
conditions for optimality.

First, define a new control function, v(t), such that the system

equations may be written

x(t) = A(t)x(t) + B(t)v(t) (4.17)
x(to) = xo (4.18)
where
fu (8), t <st<t +t
v(t) =] © ° ° a

(k.19)

ult - td), bttty S ts b,

Thus v(t), an m x 1 vector function,is the control being sought in a
well posed optimization problem. Note that, in general, wv(t) will be
discontinuous at t = t  + £ . Also recall, from Section (4.2), that a
state of the system of Equations (4.17)- (4.19) is controllable only if
t.=z t, + to. It is hereafter assumed, therefore, that tf =t

£ d d
The use of wv(t) in Equation (4.17) does not eliminate any problems

+ T .
o]

created by delays in the system differential equations. It does, however,
make explicit the basic difference between optimization problems for
systems with, and without, time delays in the control. The following

definition should make precise the basic distinction between the two systems:

Definition k.1

A control function v(t), te[to,tf], is a member of the set of

admissible control functions, V, for systems with time delay, if and

only if v(t) satisfies the following conditions:
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(1) () = uo(t), te[to,to + td]
(ii) uo(t)eU, te[to,to + td]
(i1i) +v(t)eU, te[to + td,tf]

where U is the set of admissible controls for the analogous delay-free
system and uo(t) is a prescribed vector function of tiume.

Hence, comparing Equation (4.17) with Equation (3.1), it is seen that
the time-delay system is identical to the delay-free system, excpet for the
difference in the sets of admissible controls, V and U, from which the control
function for each system must be chosen. Thus, 1f U is replaced by V, and
u(t) by v(t), in Section (3.3), the results of that section for delay-free
systems become valid for systems with time delay. This is precisely what has
been done below. The numbers in parentheses above the equality signs in the
following equations refer to the analogous (and sometimes identical) equations
for delay-free systems.

The performance index may be written

(3.3) to
J' = F[x(tf),tf] + L/~ Lix{t),v(t),t]at. (4.20)

t
o]

From Equation (4.4), x(t) is a functional of uo(t) for te[to,to + td].
Thus, during this time interval, since J' is not influenced by the, as yet,
undetermined control function, the performance index may be redefined to

be

t
f
J = F[x(tf),tf] + U/\ Llx(t),v(t),t]at. (4.21)
to + td
Thus one is now interested in minimizing J over the time interval
[t + td,tf] and such that the end-point constraints
o]

(3.4)
w[x(tf),tf] = 0 (4.22)
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are satisfied.
Using the same argument which allowed us to define J by Equation
(4.21), the variational Hamiltonian and augmented performance index for

the system may be written

(3.6)

B(x,M,v,t) = L(x(t),v(t),t) MT(t)[A(t)x(t)
(4.23)
+ B@)v(t)], te[to + td,tf]
(3.7) te
J = [Flx(t),t] + quf[x(t),t]]t _x 7t u/\ {H(X,k,v,t)
t 6+t (L.24)

T, \.
- A {t)x(t) | dt.

Now the optimization problem may be formally stated as follows:

OPTIMIZATTION PROBLEM

Given the system of Equation (4.17) and an initial state X deter-

mine the control history v (t,l,v),te[to +t tf], which minimizes the

s
augmented performance index J in Equation (h.ES) and which lies in the set
of admissible controls V. Choose v, implicitly, to satisfy the constraint
equations (L.22), and choose A(t) such that the system equations (L4.17)
are satisfied for te[to + td,tf].

Now notice that x(t) occurs in the above expressions only when
t 2 to + td. Assuming no disturbances act on the system in the time inter-

val [to,to + td], the state at t =1t +t, is given in Equation (4.6).

Since x  and tb(t),te[to,to + td], are piescribed, x{to + td) is
prescribed. Also note that the knowledge of X and ub(t),te[to,to + td],
is necessary only for the purpcse of calculating X(to + td). From Definition
(4.1) it is seen that the choice of the control law, v(t), te[to + td,tf],
is actually made in the set U of admissible controls for the delay-free

system. The optimization problem may thus be reformulated:

REVISED OPTIMIZATION PROBLEM

Given the system of Equation (L4.17) and the state x(to + td), determine
the control history vop(t,l,v),te[to + td,tf], which minimizes the augmented

performance index J in Equation (4.24) and which lies in the set of admissible
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controls U. Choose v, implicitly, to satisfy the constraint equations

(4.22), and choose A(t) such that the system equations (4.17) are
satisfied for te[to + td,tf].

The necessary conditions for optimality of v(t) in the revised
optimization problem are now presented. The revised optimization
problem in this section is identical to that of Section (3.3) for the delay-
free system when to is replaced by to + td' Thus the necessary conditions
for optimality, Equations (3.8) - (3.13), are identical for the two systems
when this association is made. These conditions are repeated here for
the time-delay system. A direct proof, from the calculus of variations

viewpoint, is given in Appendix A.

NECESSARY CONDITIONS FOR OPTIMALITY

It is necessary, if +v(t) = pr(t) is optimal in the revised optimiza-
tion problem, that there exist a vector function l(t),te[to + td,tf], and

a vector of parameters v such that the following conditions are satisfied:

x(t) = BT, telt, + ty,b,] (4.25)
A(t) = -HXT, telt, +tgt.] (4.26)
pr(t) = arg min H(x,\,v,t), telt ) + t4,t,] (4.27)
veU
x(to + td) gpecified (4.28)
T _ (dF T
A (tf) = (§—X+v —a;.)t -, (k.29)
F , T, (XF , T
=+ v =+ (=+v )(Ax + Bv) + L], _ =0 (4.30)
at at ax ax t=t,

The discussion following the statement of the necessary conditions
for optimality of delay-free systems is also applicable here. Comparing
Equations (4.25) - (4.30) with Equations (3.8) - (3.13) reveals the follow-

ing basic fact, stated here in the form of & theorem:
Theorem k4,2

The necessary conditions for optimality of delay-free linear systems
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(Equation (3.1)) are identical to the necessary conditions for optimality

of analogous systems with time delay in the control (Equations (4.1) -

(k.3)) if

(1) both systems possess the same state at time t = to + td!

(2) t=2t +t
o a

The consequences of this result, with regard to control of linear
systems with time delay in the control, is discussed in the next chapter.
It should be apparent now that the ability with which one can optimally
control systems with time delay in the control input is limited to ones

ability of optimally controlling the analogous delay-free systems.

USRI SEVY. et o
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CHAPTER V
CALCULATION AND IMPLEMENTATION OF OPTIMAL CONTROL LAWS

5.1 RELATTONSHIP BETWEEN OPTIMAL CONTROL LAWS FOR DELAY-FREE AND
TIME-DELAY SYSTEMS

Assume that the optimal control law for the delay-free system has
been determined by satisfying the necessary conditions for optimality
(Bquation (3.8)-Equation (3.13)) of the optimization problem posed in
Section 3.3. This control law will, in general, be a function of the
state, x(t), as well as time. Assuming that the control law is a feed-

back solution of the optimization problem, UOP(t) may be written
U, (8) = E(x(t),t) (5.1)

The difficulty in obtaining k(x(t),t) for a general performance index
and a high-order system is most often appreciable. The intent of this
section, however, is to show that onee k(x(t),t) is known, then the
optimal control law for the analogous time-delay optimization problem is
also known.

Theorem 4.2 relates the necessary conditions for optimality between
the delay-free and the analogous time-delay optimization problems. Start-
ing at time t =1t +t, and state X(to + td), the optimal trajectories
for each system are identical since, by Theorem 4.2, the necessary conditions
for optimality are identical. Now notice, from Figure 1.2, that the control
signal at time t 1s generated a time td prior to its execution. If the
trajectories of the time-delay and delay-~free systems are to match after
time t = to + td’ it is necessary that the calculation of the control at
time t ©be based upon knowledge of the state at time t + td. Figure 5.1
shows diagramatically how the optimal control law for the time-delay system
can be calculated from the optimal control law for the delay-free system
by predicting the value of the state at time t + td. Figure 5.2 shows a
typical control history for each system which results when using this
control scheme.

The degree of success in implementing this control law is directly
related to the ability of predicting the state at time t + td’ knowing
only the present state of the system and the present state of the delay.
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If the time delay is very large and if the disturbances acting on the
plant are basically unpredictable, the resulting trajectories would be
sub-optimal due to the inability to accurately predict the state. These
trajectories are not optimal during the time interval, of magnitude td’
between the initiation of an unpredicted disturbance and the time at which
the resulting control signal first responds to this disturbance.

Some example problems are discussed in the next two sections to
illustrate the ideas presented above. In Section 5.2 the optimal control
law for an nth—order system with time delay and with unbounded control

is derived analytically for a quadratic performance index. The second-

order example of Section 2.2.2 is reconsidered in Section 5.3.

5.2 OPTIMAL, CONTROL OF nth-ORDER SYSTEMS WITH UNBOUNDED CONTROL AND
QUADRATIC PERFORMANCE INDEX

Consideration of optimal control problems with unbounded control is
motivated primarily by the ease with which the Hamiltonian of the system
may be minimized (Eguation (4.27)) when no bound is placed on the control.
This operation is particularly simple when the system is linear and the
rerformance index is quadratic in the control. Two such problems are
considered in this section, one fixed end-point problem and one free end-
point problem. The necessary conditions for optimality (Equations (L4.25) -

(4.30)) will be used directly in obtaining solutions to these problems.

5.2.,1 FIXED END-POINT PROBLEM WITH SPECIFIED FINAL TIME

The system of Equations (4.1) - (4.3) is considered here. The system
is assumed to be controllable for tf > to + td’ where tf is the specified
final time. Define the performance index for this problem to be

t

f
J = %—f uT(T - td)qu(T - td)dT (5.2)

to + td

where Q2 is a symmetric, non-singular m x m weighting matrix.¥* The

*A weighting matrix is also assumed to be positive definite in order
tc give meaningful results. i
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control problem is to transfer the initial state to the origin while

minimizing J. The terminal constraints are thus specified by

vlx(t.),t,1 = x(t.) = O, (5.3)

The class, U, of admissible controls is assumed to be broad enough to
make the calculations below valid. 1In particular, it is assumed that
ui(T - td), the components of wu(t - td), may be unbounded so that
minimization of H(x,\,v,t) may be accomplished by setting Hv = 0 and
solving for v(t),te[to + td,tf].*

The calculation of vop(t) is thus accomplished as followss:

The variational Hamiltonian, from Equation (L4.23), is
1 T kT I
H(x,),v,t) = 5 v Qv + M [Ax + Bv], te[to + ty,t0] (5.4)
and the optimal control law is obtained by using Bquation (L.27):
_ arg min _ -1.T
vop(6hy) = T EGGAY,E) = Q0B telt] + gt e (5.5)

From Equation (L4.26) and Equation (4.29), the adjoint variables are solu-
tions of

. T
A(t) = -A(B)A(E), x(tf) = v, te[to + td,tf]. (5.6)

Integrating Equation (5.6) backwards gives
M) = @ (b,,t)v, telt +t_,t.] (5.7)
i ? o a’’f

where @(*,*) is the state transition matrix of Equation (L4.1). Recall
that since x(to + td) can be calculated from Equation (4.6), it is consid-

ered specified. Thus, integrating Equation (4.1) forward, using Equation
(5.5) and Equation (5.7), gives

. (5.8)
(t) = (t,t_ +t )x(t_+t,) - [ (5,7)B()a- B (<)g (t..,7)dlv
x e d o) d PLT, o @ (Lp .
to + td
*More precisely, H_ = O determines an extremum of J. Further

analysis is required to ghow that J is minimized.
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Since v 1is chosen to satisfy the terminal constraints, v is found
from Equation (5.8) with t = tpe By utilizing the properties of
o(*,*), v may be written in the form

t
. il
vV = q>T(tO + td,tf)[u/\ ¢(to + td,T)B(T)Q;lBT(T)¢T(tO F td,T)dT]-l .
t +t
o) d
x(to + td) (5.9)

where the existence of the inverse is insured by the non-singularity of
Q, and by the controllability assumption (existence of W-l(to + td,tf)).
Substituting Equation (5.9) and Equation (5.7) into Equation (5.5) finally

gives the optimal control law for this problem:

t
by
7 (®) = 5B 00%(e, + 0 [ ale, + tynB(0e; B (0)-
t * 5 (5.10)

T -1
P (to + td,T)dT] x(to + td), te[to + td,tf].

This control drives the initial state to zero at time tf and the control
v(t) = 0, t 2> tf, holds the state at the origin. This completes the
solution of this optimization problem.

Setting Q2 = I,, the mxm Iidentity matrix, in Equation (5.10),
pr(t) reduces to the control law (Equation (4.8)) derived in Section L.2
for zeroing the state. Also note that Equation (5.10) gives the sampled-

dataf open loop solution to the optimization problem.

The continuous feedback form of the solution to the optimization

problem is found by replacing to with t 1n the above discussion. It

IR

was assumed that to + td < tf and hence the continuous feedback solution

can only be valid when t© < tf - td. This i1s expected since after time

tf - td’ tc < td and, from Theorem 4.1, the system is no longer controll-

able. After time tf -t therefore, the sampled-data version of the

d’
solution must be used.

Replacing to by t in Equation (5.10), the feedback solution 1is

¥The solution is sampled-data in the limited sense where the number of
samples 1s one, namely the sample X, at time to.
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t
il
v () = 00T + 0,00 [ 0l + 1,088 BT -

b+t (5.11)
¢T(t + td,¢)d¢]flx(t + td),t <t -t
where x(t + td) may be written
t o+ By
*(t + td) = ot + td,t)g(t) +u[‘ o(t + td,T)B(T)pr(T)dT.
¢ (5.12)

Thus, from Equation (5.12), the optimal feedback control law is a linear
function of the present state of the system and a functional of the present
state of the delay. This latter fact tends to complicate the implementation
of this time-variable feedback control law.

Finally note that the control gain in EqQuation (5.11) approaches
infinity as t - tf - td. This control behavior is expected whenever term-
inal constraints are required to be satisfied exactly. To alleviate this
problem, these terminal constraints are relaxed in the next problem and,
instead, are replaced by a quadratic term in the final state in the perform-

ance index.

5.2.2 FREE END-POINT PROBLEM WITH SPECIFIED FINAL TIME

The problem considered here is identical to the problem above with
the exception that the terminal constraint, V¥ = 0, is removed, and
the performance index is modified to be
£ -
1T , 1t ¢
J=7%x (tf)le\tf) + E‘/ﬁ u (7 - td)qu(T - td)dr (5.13)

to + td

where Ql is a symmetric, non-singular n x n weighting matrix. The
calculation of vbp(t) for this problem is similar to that of the fixed
end-point problem. This calculation is sketched below.

The variational Hamiltonian is given by

] (5.14)

1 iy ,
H(x,M,v,t) = 5 vjbgv + M [Ax + BY], telt  + B ,t,
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and vop(t,l) is written
-1
vop(tsd) = @7 BT (£)A(t), telt + ty,t.]. (5.15)

The divergence from the solution of the fixed endr-point problem occurs

in the solution for the adjoint variables:

A(%) -ATx(t),x(tf) = Qx(t,), telt, +t,t.] (5.16)

() tel. (5.17)

¢T(tf,t)le(tf), telt, + b,

The final state, using this control law, may be written

t

f
w(eg) = QMO 4 qleg b, + 500 [ e, + t,mB(n)a3ER() -
to + td

-1
¢T(to + td,T)dT]QT(tf,to + 1)1 (et + ty)x(t, + ty) (5.18)

1
term is positive semi-definite. Finally, substitute Equation(5.18) and

Equation (5.17) into Equation (5.15) to get pr(t):

where the inverse exists since @ is assumed non-singular and the integral

t
T
- -1
pr(t) = -leBT(t)mT(tf,t)[Ql + @(te,t + td)[\/P ot + t5,57) -
B+ by

- -1
B(T)QElBT(T)¢T(tO + by, 7)aT]e (b, b + 501 0, t + t) k(b t,),

telt  + Bgstel (5.19)

a’
Now, if v(t) =0, t = tf, and if the origin is at least stable within
a region containing x{tf), then the state will remain in some neighbor-
hood of the origin, as desired. This completes the solution of this
optimization problem.

Note that, again, Equation (5.19) gives the sampled-data, open loop
solution to the optimization problem. The continuous feedback control
law is obtained from Equation (5.19) by replacing t_ with t. Again,

o)
this feedback solution is valid only when +t < tf - td. The feedback
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solution is written

-1 -1 s
vop(t) = -Q;" BT(t)gl(t,,t)[q," + @(ty,t  + td)[u/\ o(t + £5,7) ¢

t o+ by ( )
_ o _ 5.20
B(T)QelBT(T)wF(t + td,T)dT]¢ (tf,t + td)] l¢(tf,t+td)x(t+td),
t < tf - tg

Again, vop(t) is a function of the present state of the system and a
functional of the present state of the delay; but note that vop(t) is
finite in magnitude for all + < tf - td and for any tf, as long as
x(t) is finite for all time. A finite gain controller has thus been

obtained by accepting a non-zero final state. The proper choices for

Ql’Qg’ and t,
small and still bound the magnitude of the control effort.

in Equation (5.18) can, however, make x(tf) arbitrarily

The above two problems were solved by satisfying the necessary condi-
tions for optimality directly. This was possible since the adjoint equations
were easily integrated and the minimization of the Hamiltonion easily yielded
the control law in terms of the adjoint variables. The problem considered
in the next section is not easily solved by using the necessary conditions
directly. 1Instead, the ideas discussed in Section 5.1 are utilized to

obtain a feedback control law for the optimization problem.

5.3 SECOND-ORDER EXAMPLE WITH BOUNDED CONTROL AND FREE FINAL TIME

The problem considered in this section is the minimum-time regulator
problem for the an -order plant of Section 2.2. The system dynamics

and problem statement are summarized here for convenience:

o(t) + 2te(t) + e(t)

u(t - td), te[to + td,tf]

(5.21)

=0, telt st + t,]
lu(t - s )] s m, telt_ + 1t ,t.] (5.22)
e(to) = eo,é(to) = &, e(t) = &(t) =0, t <t (5.23)
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Vixltg)st,] = x(t,) = 0, &, free (5.24)

tf
J =\/p & = t, -(to + td) (5.25)
tO + td
where the state x{t) is given by
x(©)] [
x(t) = @l = [ewm] (5.26)

The adjoint vector is written KT = [xile]. The variational Hamilton-
2

ian for this system is thus

H(x,A,v,t) = 1.0 + KlXE + Kg[—xl-ggxg + v] (5.27)

The necessary conditions for optimelity (Equations (4.25) - (4.30)) reduce
to

A (8) = 2 (), telby + b5t ]

. (5.28)

lg(t) = -xl(t) + 2§l2(t), te[to + td,tf]

A (Ep) = vy, lg(tf) = v, (5.29)

vop(t,V,k) = —sgn(lz(t)), te[to + td,tf] (5.30) ?
vovl(te) = -1 (5.31)

Thus, pr(t) is determined once Kg(t) is known as a Function of

e , éo’ and t. To accomplish this, however, tf must be determined
o}

from Equation (5.31) and vl = [vl,vg] must be found such that Equation

(5.24) is satisfied. Even for this simple problem, this is not an easy
task.

The minimum-time switching curves for the analogous delay-free
optimization problem were described in Section 2.2.2., To simplify the
discussion here, assume § = 0.0, Also assume that td is of such a

magnitude that no double commands occur, otherwise it would not be possible
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to obtain a closed-loop, feedback control law for this optimization
problem (see Section 2.2.1). From the discussion in Section 5.1, this
delay-free solution can be used to construct the command curves which
give optimal trajectories for the time-delay system.

This construction is accomplished by first observing that A= -At
in the (e,e) - phase plane (see Figure 2.1). A clockwise rotation on a
trajectory about (iN,O) of td radians therefore represents prediction
of the state a time td into the future. It was concluded in Sectlon 5.1
that after time to + td the optimal trajectories of the delay-free and
time-delay systems are identical. Also recall that switching occurs a
time td after the command has been given. The optimal command curve is
thus obtained by rotating the (U = =N to u= +N) - switching curve td
radians counterclockwise about (-N,0) and by rotating the (y = +N
to u = -N) - switching curve ty radians counterclockwise about (+N,0).
This location of the command curve insures that the switching curves for
the optimal delay-free .and time-delay systems are the same, provided that
no disturbance acts between command and switch. The optimal command
curves, along with a sample trajectory, are illustrated in Figure 5.3.

Notice that since the optimal delay-free switching curve was split
at the origin to form the command curve, the resulting command curve is
disconnected. The optimal command curve which connects the two segments is

found by recalling that v(t) = 0, t >t since the initial state is

2
being transferred to the origin. Since ihe command v = 0 must be given
at time tf - td, the connecting command curve must be the locus of all
points in state space having a minimum-settling-time of magnitude td.
The calculation of this locus for general linear systems with scslar
control is performed in Appendix B with this second-order system taken

as a specific example. When td = % radians, the locus is given by

€, =M%+ (o M7 = (2m? (5.31)

This zero-command curve is indicated by a dashed line in Figure 5.3. It
is noted that this curve is an isochrone of the origin with an associated
time of magnitude td.
It is concluded that any initial state, which places x(tO + td)
outside of the region bounded by the zero-command curve, is transferred

to the origin in minimum time by the command curve described above and
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shown in Figure 5.3 for td = % radians. If multiple commands occur,
a feedback solution does not appear to be possible since the command
lines become a function of the initial state. Similarly, if x(to + td)
lies within the region bounded by the zero-command curve, the command
lines are functions of the initial state and thus a feedback control law
does not appear to be possible.

Several control alternatives are available to handle the case when

x(to + td) lies within the region bounded by the zero-command curve:

l) The minimum-time trajectory can be generated in an open loop

control scheme by predicting ahead until ¢ and issuing

f
commands such that switching occurs on the optimal switching

curve of the delay-free system.

2) If N is sufficiently small compared to acceptable values of
e and é, the region bounded by the zero command curve can define
a "dead zone region" within which v = O. That is, we could
allow state deviations that remain inside the region, but transfer

deviations outside the region at time to + t to the origin

d
in minimum time. In some sense, this would increase the terminal

manifold from a point to a region in state space.

3) A dual control system could be used with the zero-command curve
acting as the switching curve between the two control schemes.
For state deviations outside this switching curve, the minimum-
time control scheme discussed above is used. Inside the switch-
ing curve a controller such as that derived in Section 5.2.2 can
be used. The final time would not have to be greater than Etd
since the entire region is bounded by points whose minimum-settling-
time is td. Since the region is small, proper values of Ql’Qg’
and tf could be chosen so that x(tf) is sufficiently small

and the control bounds are not exceeded.

The three control schemes suggested above could, theoretically, be
applied to any control problem for which the theory developed here is
applicable. The zero-command curve can always be generated from Equation

(B5) in Appendix B. The geometrical description of these command curves
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becomes much more difficult, however, for more complicated problems. The
theory and ideas which were applied to solve this second-order example
are still applicable to higher-order systems, but the lack of knowledge
of the switching curves for the analogous delay-free systems limits our

ability to solve the higher-~order time-delay optimization problems.
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CHAPTER VI ,
SUMMARY AND CONCLUSIONS

In this study, two analogous systems and optimization problems were
defined and analyized. The only distinction between the two systems is
that one possesses a large time delay in the control. It was shown that
systems with time delay in the control are uncontrollable from the present

time, to, until time to + t This fact allowed us to formulate the

optimization problem for the tgme-delay system in such a way that the
necessary conditions for optimality of the delay-free system become applic-
able to the time-delay system. The optimization theory presented here
culminates in the statement of Theorem 4.2, which is considered to be the
main result of this study.

The necessary conditions for optimality of time-delay systems can
be obtained by means of the calculus of variations, as demonstrated in
Appendix A, without ever considering the analogous delay-free systen.

These conditions, in certain instances, can then be used directly to derive
an optimal control law for the time-delay system. Several nth-order ex=-
ample problems, with carefully chosen performance criterions, were presented
where this was the procedure which was followed.

By establishing and considering the delay-free analogue of the time-
delay system, we have shown that knowledge of the solution of one of the
optimization problems is sufficient to solve the analogue optimization
problem. A second-order problem with bounded control is used to demonstrate
this principle. The creation of the zero-command curve was the main feature
in this problem. It was demonstrated by example that large amplitude limit
cycles are characteristic of time-delay systems with bang-bang control.

The zero-command curve not only eliminates steady state limit cycles, it
also insures that the system trajectories end at the origin when the state

at time to + t lies outside of the region bounded by the zero~command

a
curve., Several control alternatives are suggested which could be used to
handle the case when x(to + td) lies inside this region.

Obtaining the feedback control law for this second-order example was

accomplished only by assuming the non-existence of double commands. This
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assumption places an upper limit upon the magnitude which the time
delay can assume, while still requiring that the optimal control law
have a feedback structure., When double commands do occur, the optimal
control law can still be generated, but only in an open-loop sense.

Several generalizations of this work are possible. PFirst, it was
assumed throughout this study that the system dynamics are linear. This
assumption was convenient in the controllability discussion, but investi-
gation of the necessary conditions for optimality reveals that system
linearity is not essential. The optimization problem was posed by first
considering the results of the controllability discussion. Once posed,
however, the optimization problem became independent of system
linearity. Implementation, however, of the resulting control laws, becomes
exceedingly difficult, as is the case with non-linear, delay-free optimal
control problems. To generalize this study to encompass non-linear systems,
one would have to consider controllability of non-linear systems to see
if a given optimization problem statement is meaningful.

Only a regulator type control problem was considered in this work.
This was done merely to simplify the analysis. Obtaining the necessary
conditions for optimality did not depend upon the type of control problem
considered. Only in the use of these necessary conditions to obtain an
optimal control law does the regulator assumption simplify the analysis.

Finally, the assumptions that the time delay was constant with respect
to time and identical in magnitude for each component of the control vector
arose from the model problem which motivated this research.* To remove
these assumptions would require further analysis, but it is felt that the
ideas discussed in this paper can be utilized when considering this more
complicated problem.

To conclude, it can be said that the ability to control optimally
the class of systems considered in this paper is dependent upon the
ability to control optimally the delay-free analogue and the ability to
predict the disturbances which act on the system. The implementation

problems will be at least as difficult as the implementation problems

*Attitude control, from earth, of a deep-space satellite approxi-
mately satisfies these assumptions.
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encountered in delay-free controllers. The need to predict the future
state is the result of the inherent period of uncontrollability possessed

by linear systems with a time delay in the control.
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APPENDIX A
DERIVATION OF NECESSARY CONDITIONS FOR OPTIMALITY
OF SYSTEMS WITH TIME DELAY '

The purpose of this appendix is to derive first-order necessary
conditions for minimizing the augmented performance index, 3, for

systems with time delay in the control (Equation (L4.2L4)):

t

f
J = [F[x(t),t] + lelf[X(t),t]]t - +f %H(x,l,v,t)

f
T Tt (A1)
T .
- A (e)x(t) ; at

To accomplish the minimization of J, we take the differential of

Equation (Al), remembering that t, may be free:

t

= 2 [ @B
aJ = [(at + L)dt + E,de]JG - ¢, + (axsx + av&r
t + td
© (A2)
- 2 T(e)ex)at
where
o = Flx(t),t] + vV ulx(t),t]. (a3)

Now integrate Equation (A2) by parts and use ©x = dx - xdt (see [12],
pg. 72) to obtain

= _ (90 T T 30 _ LT
aJ = (at +L + 2 x)t=t at,. +(x 8X)t=t - +[(ax A )dx]t - %,
. f o] a
f . (AL)
+ f [(—g;H + 1 T)ex + %—%SV]dt
t 4+ €
o} d

Now for J to be minimized, it is necessary that aJ be zero (or as close
£ ox(t), and dx(tf) are
arbitrary variations, choose the coefficients of these terms to be zero

in Equation (AL4):

to zero as possible). Therefore, since 4t
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[-g—t + L + AT(ax + Bv) oy =0 (45)

e
T _. Ob
2(e,) = & o (46)
2T(t) = - %H;, telty + ty,t,] (A7)

Equations (AS5)-(A7) are equivalent to Eguation (4.30), Equation (L.29),
and Equation (4.26), respectively. Since x(to +t d) is assumed

specified, 5x(t0 +td) is zero. Hence, dJ reduces to

b
i = f %Eav at (48)
t o+t
o} 4

Now, to minimize J, Pontryagin et.al [13] showed that v(t) must satisfy
the following relationship over the time interval of the integral in
Equation (A8):

vop(t) = %€ pin H(x,\,v,t), telt, + t5,t,] (49)
veU

Equation (A9) is precisely Equation (4.27). If v were unbounded,
setting H_=0 in Equaticin (A8) for te[to + b5t f] insures that we
have found an extremum of J. Second-order sufficient conditions would be
required in order to determine if the extremum is a minimum. When v is
bounded, the solution of Equation (A9) gives vop(t). If vop(t) lies
on a boundary of admissible v, we are assured that J has been minimized.
When Vop(t) does not lie on a boundary of admissible v, <the secogd-
order sufficient conditions are again required to determine whether J

has been minimized.
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APPENDIX B
CALCULATION OF ZERO-COMMAND LOCUS FOR LINEAR SYSTEMS
AND MINIMUM-TIME TRAJECTORIES

We have assumed the non-existence of double-commands in Section
5.3. It is reasonable to assume, therefore, that at most one switch

occurs from time tf - td to time tf, assuming scalar control.

Designate the points lying on the locus of zero-command by Xp- The

control is u = N and the system dynamics are given by

x(t) = A(t)x(t) + B(t)(aN). (B1)

The solution of Equation (Bl) can be written

t
x(6) = 96,6 )x + [ 9t,0)B(x) (0)as (s2)
t

Let time to + t., be the time of the switch point. Then the switch

1
point is given by

to + tl
x(to + tl) = Q(to + tl,to)gL-+Jf cp(tl + tO,T)B(T)(iN)dT

%, (83)

and the final state is written

x(tf) =0= qJ(to +t.,t + tl)x(to + tl)

a’ o
to+td
+h/\ ¢(to + td,T)B(T)(¢N)dT (B4)
t +t
o 1

Now substitute x(to + tl) from Equation (B3) into Equation (BY),

assuming to is zero for simplicity. Solving for Xr, then gives
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b td tl
é% = + [‘jp o(o,1)B(t)dr -\jr o(o,7)B(t)dr], o= t) S %y

t o}

1 (B5)

Thus, considering gL as a function of tl’ Equation (B5) with tl
varying from zero to td generates the locus of points with minimum-
time trajectories which pass thru the origin at time td.

As a specific example, consider the second-order system of Section

5.3. PFor this system,

o(0,7) = [cos'r -sinfc] . B(e) = \:o] ' (56)

sint coST 1

Substituting Equation (B6) into Equation (B5) gives

cost, + 1 - 2costl e

X
e ¢ -k (37)
N sm.td -2s:|.nt1 eL
Eliminating +t, in Equation (B7) finally gives
(e. T N sint )2 4+ (e, ¥ ¥ ¥ Ncost )2 = (2N)2 (B8)
L d L d

as the desired locus of points. The points (eL,éL) in the phase plane
thus lie on circular arcs of radius 2N and center (iNiNcostd, iNsintd).
Note that if § # O in the second-order example, the circular arcs would
become arcs of logarithmic spirals, but the structure of the locus would

be the sane.
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